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• Locally normalized models 
are often easy to train 

• Globally normalized models 
using the same #params can 
be much more accurate 

• Applies to multiple tasks
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Mini-batches

Locally Normalized Training

Some advantages: 
• Trivially Parallelizable 
• SGD Training recipes 
• Standard NN Packages

[Chen & Manning ’14, Weiss et al. ’15]
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Predicted compression Sequence probability under 
Local          Global

0.13           0.05
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0.06           0.07

Sentence Compression: Label Bias



Why does it work?



1. Global Models are More Expressive

Let 
•       set of distributions under a Local model 
•       set of distributions under a Global model 

Theorem: 

Therefore there are some distributions over 
sequences that cannot be captured in a finite-
lookahead locally-normalized model.

PL

PG

PL

[This work, Smith and Johnson ’07]

PL ( PG

PG
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Conclusions

Global models: 

• can be taught to do search better 

• more accurate, in exchange for more 
training time 

• same wicked fast decoding 

• applicable to multiple tasks
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Parsey McParseface + 40 languages 

https://github.com/tensorflow/models/tree/master/syntaxnet



ACL 2016 Google Booth

And check out the  
Natural Language Understanding  

team page: g.co/NLUTeam

Come by for demos, info and swag
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Longer examples of ambiguity


