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Motivation

We know that parsing performance goes down on
out-of-domain text, but do you know how bad it can be?
It is very bad (at least for some parsers).
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Parsing Models

Deterministic Shift-Reduce Parser

In-house implementation of a shift-reduce parser (cf. Nivre's Malt Parser).
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Latent Variable Parser

Refine the observed trees with latent variables and learn subcategories.
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What

Uptraining

Train a fast (but less accurate) parser on the output
of a more accurate (but slower) parser.

- Wall Street Journal section of the Penn Treebank.
 QuestionBank (2K for training, 2K for evaluation).

* 1M questions from web queries that match a regular expresssion.
» Convert constituency trees to Stanford Dependencies.
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Hypothesis:

Two Experiments:
1. Collapse question specific phrasal categories (SQ, SBARQ) and retrain.
2. Remove all questions from the Wall Street Journal and retrain.

Results:
1. Latent Variable Parser loses 0.7% while Charniak's lexicalized parser loses 1.5%.
2. Charniak's lexicalized parser is better when no questions where present in training.

- Latent Variable Parser allocates some subcategories to questions and therefore
generalizes better.

Final Results
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Uptraining with 100K unlabeled questions achieves comparable results to
having 2K labeled questions. With 100K unlabeled and 2K labeled questions,
uptraining closes the gap between in-domain and out-of-domain performance.
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Various uptrained models evaluated on questions.
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Example questions from the QuestionBank.
Gold parses on the left, predictions of a model trained on the WSJ on the right.
The uptrained model gets most of these right.

nn nn ob
NN NNP NNP .
What films featured the character Popeye Doyle ?

-— ems o> e» o e o
- ™ -

-~ - N
/ P AN
root  fcompl ‘nsub] ccomp [ det nn nn \*
I 4 \v

ROOT WP NNS VBD DT NN NNP NNP .
What films featured the character Popeye Doyle ?

- e oo o o,

- -~ — - = — ~

Yoot /c;m;lk 7 an “n W nsubj >
AR TR A A

ROOT WRB VBZ NNP NNP NNP
When was QOzzy Osbourne  born ?

- em» ez o oD e
-— -.

~ - = ~
7 N
/ ~ roor\ de? mamﬂ p\
. vy \

ROOT WP VBZ DT JJS NN
What is the oldest profession ?

/ ” T\ 7 ‘\\
root ‘compl ‘amoc?‘\ ‘nsubj‘ ccomp m nsubj Q

ROOT WRB JJ NNS VBD NNP NNP VB .
How many people did Randy Craft kill ?

Google

Research



