
Learning Compact Lexicons for CCG Semantic Parsing

Yoav Artzi∗
Computer Science & Engineering

University of Washington
Seattle, WA 98195

yoav@cs.washington.edu

Dipanjan Das Slav Petrov
Google Inc.

76 9th Avenue
New York, NY 10011

{dipanjand,slav}@google.com

Abstract

We present methods to control the lexicon
size when learning a Combinatory Cate-
gorial Grammar semantic parser. Existing
methods incrementally expand the lexicon
by greedily adding entries, considering a
single training datapoint at a time. We pro-
pose using corpus-level statistics for lexi-
con learning decisions. We introduce vot-
ing to globally consider adding entries to
the lexicon, and pruning to remove entries
no longer required to explain the training
data. Our methods result in state-of-the-art
performance on the task of executing se-
quences of natural language instructions,
achieving up to 25% error reduction, with
lexicons that are up to 70% smaller and are
qualitatively less noisy.

1 Introduction

Combinatory Categorial Grammar (Steedman,
1996, 2000, CCG, henceforth) is a commonly
used formalism for semantic parsing – the task
of mapping natural language sentences to for-
mal meaning representations (Zelle and Mooney,
1996). Recently, CCG semantic parsers have been
used for numerous language understanding tasks,
including querying databases (Zettlemoyer and
Collins, 2005), referring to physical objects (Ma-
tuszek et al., 2012), information extraction (Kr-
ishnamurthy and Mitchell, 2012), executing in-
structions (Artzi and Zettlemoyer, 2013b), gen-
erating regular expressions (Kushman and Barzi-
lay, 2013), question-answering (Cai and Yates,
2013) and textual entailment (Lewis and Steed-
man, 2013). In CCG, a lexicon is used to map
words to formal representations of their meaning,
which are then combined using bottom-up opera-
tions. In this paper we present learning techniques

∗This research was carried out at Google.

chair ` N : λx.chair(x)
chair ` N : λx.sofa(x)
chair ` AP : λa.len(a, 3)
chair ` NP : A(λx.corner(x))
chair ` ADJ : λx.hall(x)

Figure 1: Lexical entries for the word chair as learned
with no corpus-level statistics. Our approach is able to
correctly learn only the top two bolded entries.

to explicitly control the size of the CCG lexicon,
and show that this results in improved task perfor-
mance and more compact models.

In most approaches for inducing CCGs for se-
mantic parsing, lexicon learning and parameter es-
timation are performed jointly in an online algo-
rithm, as introduced by Zettlemoyer and Collins
(2007). To induce the lexicon, words extracted
from the training data are paired with CCG cat-
egories one sample at a time (for an overview of
CCG, see §2). Joint approaches have the potential
advantage that only entries participating in suc-
cessful parses are added to the lexicon. However,
new entries are added greedily and these decisions
are never revisited at later stages. In practice, this
often results in a large and noisy lexicon.

Figure 1 lists a sample of CCG lexical entries
learned for the word chair with a greedy joint al-
gorithm (Artzi and Zettlemoyer, 2013b). In the
studied navigation domain, the word chair is often
used to refer to chairs and sofas, as captured by the
first two entries. However, the system also learns
several spurious meanings: the third shows an er-
roneous usage of chair as an adverbial phrase de-
scribing action length, while the fourth treats it as
a noun phrase and the fifth as an adjective. In con-
trast, our approach is able to correctly learn only
the top two lexical entries.

We present a batch algorithm focused on con-
trolling the size of the lexicon when learning CCG
semantic parsers (§3). Because we make updates
only after processing the entire training set, we

can take corpus-wide statistics into account be-
fore each lexicon update. To explicitly control
the size of the lexicon, we adopt two complemen-
tary strategies: voting and pruning. First, we con-
sider the lexical evidence each sample provides as
a vote towards potential entries. We describe two
voting strategies for deciding which entries to add
to the model lexicon (§4). Second, even though
we use voting to only conservatively add new lex-
icon entries, we also prune existing entries if they
are no longer necessary for parsing the training
data. These steps are incorporated into the learn-
ing framework, allowing us to apply stricter crite-
ria for lexicon expansion while maintaining a sin-
gle learning algorithm.

We evaluate our approach on the robot navi-
gation semantic parsing task (Chen and Mooney,
2011; Artzi and Zettlemoyer, 2013b). Our exper-
imental results show that we outperform previous
state of the art on executing sequences of instruc-
tions, while learning significantly more compact
lexicons (§6 and Table 3).

2 Task and Inference

To present our lexicon learning techniques, we
focus on the task of executing natural language
navigation instructions (Chen and Mooney, 2011).
This domain captures some of the fundamental
difficulties in recent semantic parsing problems.
In particular, it requires learning from weakly-
supervised data, rather than data annotated with
full logical forms, and parsing sentences in a
situated environment. Additionally, successful
task completion requires interpreting and execut-
ing multiple instructions in sequence, requiring
accurate models to avoid cascading errors. Al-
though this overview centers around the aforemen-
tioned task, our methods are generalizable to any
semantic parsing approach that relies on CCG.

We approach the navigation task as a situated
semantic parsing problem, where the meaning of
instructions is represented with lambda calculus
expressions, which are then deterministically ex-
ecuted. Both the mapping of instructions to logi-
cal forms and their execution consider the current
state of the world. This problem was recently ad-
dressed by Artzi and Zettlemoyer (2013b) and our
experimental setup mirrors theirs. In this section,
we provide a brief background on CCG and de-
scribe the task and our inference method.

walk forward twice

S/NP NP AP
λx.λa.move(a) ∧ direction(a, x) forward λa.len(a, 2)

>
S S\S

λa.move(a) ∧ direction(a, forward) λf.λa.f(a) ∧ len(a, 2)
<

S
λa.move(a) ∧ direction(a, forward) ∧ len(a, 2)

in the red hallway

PP/NP NP/N ADJ N
λx.λy.intersect(y, x) λf.ι(f) λx.brick(x) λx.hall(x)

N/N
λf.λx.f(x)∧
brick(x)

<
N

λx.hall(x) ∧ brick(x)
>

NP
ι(λx.hall(x) ∧ brick(x)

>
PP

λy.intersect(y, ι(λx.hall(x) ∧ brick(x)))

Figure 2: Two CCG parses. The top shows a complete
parse with an adverbial phrase (AP), including unary
type shifting and forward (>) and backward (<) ap-
plication. The bottom fragment shows a prepositional
phrase (PP) with an adjective (ADJ).

2.1 Combinatory Categorial Grammar

CCG is a linguistically-motivated categorial for-
malism for modeling a wide range of language
phenomena (Steedman, 1996; Steedman, 2000).
In CCG, parse tree nodes are categories, which are
assigned to strings (single words or n-grams) and
combined to create a complete derivation. For ex-
ample, S/NP : λx.λa.move(a)∧ direction(a, x)
is a CCG category describing an imperative verb
phrase. The syntactic type S/NP indicates the
category is expecting an argument of type NP
on its right, and the returned category will have
the syntax S. The directionality is indicated by
the forward slash /, where a backward slash \
would specify the argument is expected on the left.
The logical form in the category represents its se-
mantic meaning. For example, λx.λa.move(a) ∧
direction(a, x) in the category above is a function
expecting an argument, the variable x, and return-
ing a function from events to truth-values, the se-
mantic representation of imperatives. In this do-
main, the conjunction in the logical form specifies
conditions on events. Specifically, the event must
be a move event and have a specified direction.

A CCG is defined by a lexicon and a set of com-
binators. The lexicon provides a mapping from
strings to categories. Figure 2 shows two CCG
parses in the navigation domain. Parse trees are
read top to bottom. Parsing starts by matching cat-
egories to strings in the sentence using the lexicon.
For example, the lexical entry walk ` S/NP :
λx.λa.move(a) ∧ direction(a, x) pairs the string
walk with the example category above. Each in-
termediate parse node is constructed by applying

one of a small set of binary CCG combinators or
unary operators. For example, in Figure 2 the cat-
egory of the span walk forward is combined with
the category of twice using backward application
(<). Parsing concludes with a logical form that
captures the meaning of the complete sentence.

We adopt a factored representation for CCG
lexicons (Kwiatkowski et al., 2011), where
entries are dynamically generated by combining
lexemes and templates. A lexeme is a pair
that consists of a natural language string and
a set of logical constants, while the template
contains the syntactic and semantic components
of a CCG category, abstracting over logical
constants. For example, consider the lexical entry
walk ` S/NP : λx.λa.move(a) ∧ direction(a, x).
Under the factored representation, this entry
can be constructed by combining the lexeme
〈walk, {move,direction}〉 and the template
λv1.λv2.[S/NP : λx.λa.v1(a) ∧ v2(a, x)]. This
representation allows for better generalization
over unseen lexical entries at inference time,
allowing for pairings of templates and lexemes
not seen during training.

2.2 Situated Log-Linear CCGs

We use a CCG to parse sentences to logical forms,
which are then executed. Let S be a set of states,
X be the set of all possible sentences, and E be
the space of executions, which are S → S func-
tions. For example, in the navigation task from
Artzi and Zettlemoyer (2013b), S is a set of po-
sitions on a map, as illustrated in Figure 3. The
map includes an agent that can perform four ac-
tions: LEFT, RIGHT, MOVE, and NULL. An execu-
tion e is a sequence of actions taken consecutively.
Given a state s ∈ S and a sentence x ∈ X , we aim
to find the execution e ∈ E described in x. Let Y
be the space of CCG parse trees and Z the space
of all possible logical forms. Given a sentence x
we generate a CCG parse y ∈ Y , which includes a
logical form z ∈ Z . An execution e is then gener-
ated from z using a deterministic process.

Parsing with a CCG requires choosing appro-
priate lexical entries from an often ambiguous lex-
icon and the order in which operations are ap-
plied. In a situated scenario such choices must
account for the current state of the world. In gen-
eral, given a CCG, there are many parses for each
sentence-state pair. To discriminate between com-
peting parses, we use a situated log-linear CCG,

facing the chair in the intersection move forward twice
λa.pre(a, front(you, ι(λx.chair(x)∧

intersect(x, ι(λy.intersection(y))))))∧
move(a) ∧ len(a, 2)
〈FORWARD, FORWARD〉
turn left
λa.turn(a) ∧ direction(a, left)
〈LEFT〉
go to the end of the hall
λx.move(a) ∧ to(a, ι(λx.end(x, ι(λy.hall(y)))))
〈FORWARD, FORWARD〉

Figure 3: Fragment of a map and instructions for the
navigation domain. The fragment includes two inter-
secting hallways (red and blue), two chairs and an agent
facing left (green pentagon), which follows instructions
such as these listed below. Each instruction is paired
with a logical form representing its meaning and its ex-
ecution in the map.

inspired by Clark and Curran (2007).
Let GEN(x, s; Λ) ⊂ Y be the set of all possi-

ble CCG parses given the sentence x, the current
state s and the lexicon Λ. In GEN(x, s; Λ), multi-
ple parse trees may have the same logical form;
let Y(z) ⊂ GEN(x, s; Λ) be the subset of such
parses with the logical form z at the root. Also,
let θ ∈ Rd be a d-dimensional parameter vector.
We define the probability of the logical form z as:

p(z|x, s; θ,Λ) =
∑

y∈Y(z)

p(y|x, s; θ,Λ) (1)

Above, we marginalize out the probabilities of all
parse trees with the same logical form z at the root.
The probability of a parse tree y is defined as:

p(y|x, s; θ,Λ) =
eθ·φ(x,s,y)∑

y′∈GEN(x,s;Λ)

eθ·φ(x,s,y′)
(2)

Where φ(x, s, y) ∈ Rd is a feature vector. Given
a logical form z, we deterministically map it to an
execution e ∈ E . At inference time, given a sen-
tence x and state s, we find the best logical form
z∗ (and its corresponding execution) by solving:

z∗ = arg max
z

p(z|x, s; θ,Λ) (3)

The above arg max operation sums over all trees
y ∈ Y(z), as described in Equation 1. We use a
CKY chart for this computation. The chart signa-
ture in each span is a CCG category. Since ex-
act inference is prohibitively expensive, we fol-
low previous work and perform bottom-up beam
search, maintaining only the k-best categories for
each span in the chart. The logical form z∗ is taken
from the k-best categories at the root of the chart.
The partition function in Equation 2 is approxi-
mated by summing the inside scores of all cate-
gories at the root. We describe the choices of hy-
perparameters and details of our feature set in §5.

3 Learning

Learning a CCG semantic parser requires inducing
the entries of the lexicon Λ and estimating pars-
ing parameters θ. We describe a batch learning
algorithm (Figure 4), which explicitly attempts to
induce a compact lexicon, while fully explaining
the training data. At training time, we assume ac-
cess to a set of N examples D =

{
d(i)
}N

1
, where

each datapoint d(i) = 〈x(i), s(i), e(i)〉, consists of
an instruction x(i), the state s(i) where the instruc-
tion is issued and its execution demonstration e(i).
In particular, we know the correct execution for
each state and instruction, but we do not know the
correct CCG parse and logical form. We treat the
choices that determine them, including selection
of lexical entries and parsing operators, as latent.
Since there can be many logical forms z ∈ Z that
yield the same execution e(i), we marginalize over
the logical forms (using Equation 1) when maxi-
mizing the following regularized log-likelihood:

L (θ,Λ,D) = (4)∑
d(i)∈D

∑
z∈Z(e(i))

p(z|x(i), s(i); θ,Λ)− γ

2
‖θ‖22

WhereZ(e(i)) is the set of logical forms that result
in the execution e(i) and the hyperparameter γ is
a regularization constant. Due to the large number
of potential combinations,1 it is impractical to con-
sider the complete set of lexical entries, where all
strings (single words and n-grams) are associated
with all possible CCG categories. Therefore, simi-
lar to prior work, we gradually expand the lexicon
during learning. As a result, the parameter space

1For the navigation task, given the set of CCG category
templates (see §2.1) and parameters used there would be be-
tween 7.5-10.2M lexical entries to consider, depending on the
corpus used (§5).

Algorithm 1 Batch algorithm for maximizing L (θ,Λ,D).
See §3.1 for details.

Input: Training dataset D =
{
d(i)
}N
1

, number of learning
iterations T , seed lexicon Λ0, a regularization constant
γ, and a learning rate µ. VOTE is defined in §4.

Output: Lexicon Λ and model parameters θ
1: Λ← Λ0

2: for t = 1 to T do
» Generate lexical entries for all datapoints.

3: for i = 1 to N do
4: λ(i) ← GENENTRIES(d(i), θ,Λ)

» Add corpus-wide voted entries to model lexicon.
5: Λ← Λ ∪ VOTE(Λ, {λ(1), . . . , λ(N)})

» Compute gradient and entries to prune.
6: for i = 1 to N do
7: 〈λ(i)

− ,∆
(i)〉 ← COMPUTEUPDATE(d(i), θ,Λ)

» Prune lexicon.

8: Λ← Λ \
N⋂
i=1

λ
(i)
−

» Update model parameters.

9: θ ← θ + µ

N∑
i=1

∆(i) − γθ

10: return Λ and θ

Algorithm 2 GENENTRIES: Algorithm to generate lexical
entries from one training datapoint. See §3.2 for details.
Input: Single datapoint d = 〈x, s, e〉, current model param-

eters θ and lexicon Λ.
Output: Datapoint-specific lexicon entries λ.

» Augment lexicon with sentence-specific entries.
1: Λ+ ← Λ ∪ GENLEX(d,Λ, θ)

» Get max-scoring parses producing correct execution.
2: y+ ← GENMAX(x, s, e; Λ+, θ)

» Extract lexicon entries from max-scoring parses.
3: λ←

⋃
y∈y+

LEX(y)

4: return λ

Algorithm 3 COMPUTEUPDATE: Algorithm to compute the
gradient and the set of lexical entries to prune for one data-
point. See §3.3 for details.
Input: Single datapoint d = 〈x, s, e〉, current model param-

eters θ and lexicon Λ.
Output: 〈λ−,∆〉, lexical entries to prune for d and gradient.

» Get max-scoring correct parses given Λ and θ.
1: y+ ← GENMAX(x, s, e; Λ, θ)

» Create the set of entries to prune.
2: λ− ← Λ \

⋃
y∈y+

LEX(y)

» Compute gradient.
3: ∆← E(y | x, s, e; θ,Λ)− E(y | x, s; θ,Λ)
4: return 〈λ−,∆〉

Figure 4: Our learning algorithm and its subroutines.

changes throughout training whenever the lexicon
is modified. The learning problem involves jointly
finding the best set of parameters and lexicon en-
tries. In the remainder of this section, we describe
how we optimize Equation 4, while explicitly con-
trolling the lexicon size.

3.1 Optimization Algorithm

We present a learning algorithm to optimize the
data log-likelihood, where both lexicon learning
and parameter updates are performed in batch, i.e.,
after observing all the training corpus. The batch
formulation enables us to use information from the
entire training set when updating the model lexi-
con. Algorithm 1 presents the outline of our op-
timization procedure. It takes as input a training
dataset D, number of iterations T , seed lexicon
Λ0, learning rate µ and regularization constant γ.

Learning starts with initializing the model lex-
icon Λ using Λ0 (line 1). In lines 2-9, we run T
iterations; in each, we make two passes over the
corpus, first to generate lexical entries, and second
to compute gradient updates and lexical entries to
prune. To generate lexical entries (lines 3-4) we
use the subroutine GENENTRIES to independently
generate entries for each datapoint, as described
in §3.2. Given the entries for each datapoint, we
vote on which to add to the model lexicon. The
subroutine VOTE (line 5) chooses a subset of the
proposed entries using a particular voting strategy
(see §4). Given the updated lexicon, we process
the corpus a second time (lines 6-7). The sub-
routine COMPUTEUPDATE, as described in §3.3,
computes the gradient update for each datapoint
d(i), and also generates the set of lexical entries not
included in the max-scoring parses of d(i), which
are candidates for pruning. We prune from the
model lexicon all lexical entries not used in any
correct parse (line 8). During this pruning step, we
ensure that no entries from Λ0 are removed from
Λ. Finally, the gradient updates are accumulated
to update the model parameters (line 9).

3.2 Lexical Entries Generation

For each datapoint d = 〈x, s, e〉, the subroutine
GENENTRIES, as described in Algorithm 2, gen-
erates a set of potential entries. The subroutine
uses the function GENLEX, originally proposed
by Zettlemoyer and Collins (2005), to generate
lexical entries from sentences paired with logical
forms. We use the weakly-supervised variant of
Artzi and Zettlemoyer (2013b). Briefly, GENLEX

uses the sentence and expected execution to gen-
erate new lexemes, which are then paired with a
set of templates factored from Λ0 to generate new
lexical entries. For more details, see §8 of Artzi
and Zettlemoyer (2013b).

Since GENLEX over-generates entries, we need

to determine the set of entries that participate
in max-scoring parses that lead to the correct
execution e. We therefore create a sentence-
specific lexicon Λ+ by taking the union of the
GENLEX-generated entries for the current sen-
tence and the model lexicon (line 1). We define
GENMAX(x, s, e; Λ+, θ) to be the set of all max-
scoring parses according to the parameters θ that
are in GEN(x, s; Λ+) and result in the correct ex-
ecution e (line 2). In line 3 we use the function
LEX(y), which returns the lexical entries used in
the parse y, to compute the set of all lexical en-
tries used in these parses. This final set contains
all newly generated entries for this datapoint and
is returned to the optimization algorithm.

3.3 Pruning and Gradient Computation

Algorithm 3 describes the subroutine COMPUTE-
UPDATE that, given a datapoint d, the current
model lexicon Λ and model parameters θ, returns
the gradient update and the set of lexical entries
to prune for d. First, similar to GENENTRIES we
compute the set of correct max-scoring parses us-
ing GENMAX (line 1). This time, however, we do
not use a sentence-specific lexicon, but instead use
the model lexicon that has been expanded with all
voted entries. As a result, the set of max-scoring
parses producing the correct execution may be
different compared to GENENTRIES. LEX(y) is
then used to extract the lexical entries from these
parses, and the set difference (λ−) between the
model lexicon and these entries is set to be pruned
(line 2). Finally, the partial derivative for the data-
point is computed using the difference of two ex-
pected feature vectors, according to two distribu-
tions (line 3): (a) parses conditioned on the correct
execution e, the sentence x, state s and the model,
and (b) all parses not conditioned on the execution
e. The derivatives are approximate due to the use
of beam search, as described in §2.2.

4 Global Voting for Lexicon Learning

Our goal is to learn compact and accurate CCG
lexicons. To this end, we globally reason about
adding new entries to the lexicon by voting (VOTE,
Algorithm 1, line 5), and remove entries by prun-
ing the ones no longer required for explaining the
training data (Algorithm 1, line 8). In voting, each
datapoint can be considered as attempting to in-
fluence the learning algorithm to update the model
lexicon with the entries required to parse it. In this

Round 1 Round 2 Round 3 Round 4

d(1)
〈chair, {chair}〉
〈chair, {hatrack}〉
〈chair, {turn,direction}〉

1/3
1/3
1/3

〈chair, {chair}〉
〈chair, {hatrack}〉

1/2
1/2
〈chair, {chair}〉 1 〈chair, {chair}〉 1

d(2)
〈chair, {chair}〉
〈chair, {hatrack}〉

1/2
1/2
〈chair, {chair}〉
〈chair, {hatrack}〉

1/2
1/2
〈chair, {chair}〉 1 〈chair, {chair}〉 1

d(3)
〈chair, {chair}〉
〈chair, {easel}〉

1/2
1/2
〈chair, {chair}〉
〈chair, {easel}〉

1/2
1/2
〈chair, {chair}〉
〈chair, {easel}〉

1/2
1/2
〈chair, {chair}〉 1

d(4) 〈chair, {easel}〉 1 〈chair, {easel}〉 1 〈chair, {easel}〉 1 〈chair, {easel}〉 1

Votes

〈chair, {chair}〉
〈chair, {easel}〉
〈chair, {hatrack}〉
〈chair, {turn,direction}〉

11/3
11/2
5/6
1/3

〈chair, {chair}〉
〈chair, {easel}〉
〈chair, {hatrack}〉

11/2
11/2

1

〈chair, {chair}〉
〈chair, {easel}〉

21/2
11/2

〈chair, {chair}〉〈chair, {chair}〉〈chair, {chair}〉
〈chair, {easel}〉

3
1

Discard 〈chair, {turn, direction}〉 〈chair, {hatrack}〉 〈chair, {easel}〉

Figure 5: Four rounds of CONSENSUSVOTE for the string chair for four training datapoints. For each datapoint,
we specify the set of lexemes generated in the Round 1 column, and update this set after each round. At the end,
the highest voted new lexeme according to the final votes is returned. In this example, MAXVOTE and CONSEN-
SUSVOTE lead to different outcomes. MAXVOTE, based on the initial sets only, will select 〈chair, {easel}〉.

section we describe two alternative voting strate-
gies. Both strategies ensure that new entries are
only added when they have wide support in the
training data, but count this support in different
ways. For reproducibility, we also provide step-
by-step pseudocode for both methods in the sup-
plementary material.

Since we only have access to executions and
treat parse trees as latent, we consider as correct
all parses that produce correct executions. Fre-
quently, however, incorrect parses spuriously lead
to correct executions. Lexical entries extracted
from such spurious parses generalize poorly. The
goal of voting is to eliminate such entries.

Voting is formulated on the factored lexicon
representation, where each lexical entry is factored
into a lexeme and a template, as described in §2.1.
Each lexeme is a pair containing a natural lan-
guage string and a set of logical constants.2 A lex-
eme is combined with a template to create a lexical
entry. In our lexicon learning approach only new
lexemes are generated, while the set of templates
is fixed; hence, our voting strategies reason over
lexemes and only create complete lexicon entries
at the end. Decisions are made for each string in-
dependently of all other strings, but considering all
occurrences of that string in the training data.

In lines 3-4 of Algorithm 1 GENENTRIES is
used to propose new lexical entries for each train-
ing datapoint d(i). For each d(i) a set λ(i), that
includes all lexical entries participating in parses
that lead to the correct execution, is generated. In
these sets, the same string can appear in multiple

2Recall, for example, that in one lexeme the string walk
may be paired with the set of constants {move, direction}.

lexemes. To normalize its influence, each data-
point is given a vote of 1.0 for each string, which
is distributed uniformly among all lexemes con-
taining the same string.

For example, a specific λ(i) may consist of
the following three lexemes: 〈chair, {chair}〉,
〈chair, {hatrack}〉, 〈face, {post, front, you}〉. In
this set, the phrase chair has two possible mean-
ings, which will therefore each receive a vote of
0.5, while the third lexeme will be given a vote of
1.0. Such ambiguity is common and occurs when
the available supervision is insufficient to discrim-
inate between different parses, for example, if they
lead to identical executions.

Each of the two following strategies reasons
over these votes to globally select the best lex-
emes. To avoid polluting the model lexicon, both
strategies adopt a conservative approach and only
select at most one lexeme for each string in each
training iteration.

4.1 Strategy 1: MAXVOTE

The first strategy for selecting voted lexical entries
is straightforward. For each string it simply aggre-
gates all votes and selects the new lexeme with the
most votes. A lexeme is considered new if it is
not already in the model lexicon. If no such sin-
gle lexeme exists (e.g., no new entries were used
in correctly executing parses or in the case of a tie)
no lexeme is selected in this iteration.

A potential limitation of MAXVOTE is that the
votes for all rejected lexemes are lost. However,
it is often reasonable to re-allocate these votes to
other lexemes. For example, consider the sets of
lexemes for the word chair in the Round 1 col-

umn of Figure 5. Using MAXVOTE on these sets
will select the lexeme 〈chair, {easel}〉, rather than
the correct lexeme 〈chair, {chair}〉. This occurs
when the datapoints supporting the correct lexeme
distribute their votes over many spurious lexemes.

4.2 Strategy 2: CONSENSUSVOTE

Our second strategy CONSENSUSVOTE aims to
capture the votes that are lost in MAXVOTE. In-
stead of discarding votes that do not go to the max-
imum scoring lexeme, voting is done in several
rounds. In each round the lowest scoring lexeme
is discarded and votes are re-assigned uniformly
to the remaining lexemes. This procedure is con-
tinued until convergence. Finally, given the sets of
lexemes in the last round, the votes are computed
and the new lexeme with most votes is selected.

Figure 5 shows a complete voting process for
four training datapoints. In each round, votes
are aggregated over the four sets of lexemes, and
the lexeme with the fewest votes is discarded.
For each set of lexemes, the discarded lexeme
is removed, unless it will lead to an empty set.3

In the example, while 〈chair, {easel}〉 is dis-
carded in Round 3, it remains in the set of d(4).
The process converges in the fourth round, when
there are no more lexemes to discard. The fi-
nal sets include two entries: 〈chair, {chair}〉 and
〈chair, {easel}〉. By avoiding wasting votes on
lexemes that have no chance of being selected, the
more widely supported lexeme 〈chair, {chair}〉
receives the most votes, in contrast to Round 1,
where 〈chair, {easel}〉 was the highest voted one.

5 Experimental Setup

To isolate the effect of our lexicon learning tech-
niques we closely follow the experimental setup of
previous work (Artzi and Zettlemoyer, 2013b, §9)
and use its publicly available code.4 This includes
the provided beam-search CKY parser, two-pass
parsing for testing, beam search for executing se-
quences of instructions and the same seed lexicon,
weight initialization and features. Finally, except

3This restriction is meant to ensure that discarding lex-
emes will not change the set of sentences that can be parsed.
In addition, it means that the total amount of votes given to a
string is invariant between rounds. Allowing for empty sets
will change the sum of votes, and therefore decrease the num-
ber of datapoints contributing to the decision.

4Their implementation, based on the University of Wash-
ington Semantic Parsing Framework (Artzi and Zettlemoyer,
2013a), is available at http://yoavartzi.com/navi.

the optimization parameters specified below, we
use the same parameter settings.

Data For evaluation we use two related cor-
pora: SAIL (Chen and Mooney, 2011) and ORA-
CLE (Artzi and Zettlemoyer, 2013b). Due to how
the original data was collected (MacMahon et al.,
2006), SAIL includes many wrong executions and
about 30% of all instruction sequences are infeasi-
ble (e.g., instructing the agent to walk into a wall).
To better understand system performance and the
effect of noise, ORACLE was created with the
subset of valid instructions from SAIL paired with
their gold executions. Following previous work,
we use a held-out set for the ORACLE corpus and
cross-validation for the SAIL corpus.

Systems We report two baselines. Our batch
baseline uses the same regularized algorithm, but
updates the lexicon by adding all entries without
voting and skips pruning. Additionally, we added
post-hoc pruning to the algorithm of Artzi and
Zettlemoyer (2013b) by discarding all learned en-
tries that are not participating in max-scoring cor-
rect parses at the end of training. For ablation,
we study the influence of the two voting strategies
and pruning, while keeping the same regulariza-
tion setting. Finally, we compare our approach to
previous published results on both corpora.

Optimization Parameters We optimized the
learning parameters using cross validation on the
training data to maximize recall of complete se-
quence execution and minimize lexicon size. We
use 10 training iterations and the learning rate
µ = 0.1. For SAIL we set the regularization pa-
rameter γ = 1.0 and for ORACLE γ = 0.5.

Full Sequence Inference To execute sequences
of instructions we use the beam search procedure
of Artzi and Zettlemoyer (2013b) with an identical
beam size of 10. The beam stores states, and is
initialized with the starting state. Instructions are
executed in order, each is attempted from all states
currently in the beam, the beam is then updated
and pruned to keep the 10-best states. At the end,
the best scoring state in the beam is returned.

Evaluation Metrics We evaluate the end-to-end
task of executing complete sequences of instruc-
tions against an oracle final state. In addition, to
better understand the results, we also measure task
completion for single instructions. We repeated

ORACLE corpus cross-validation Single sentence Sequence Lexicon
P R F1 P R F1 size

Artzi and Zettlemoyer (2013b) 84.59 82.74 83.65 68.35 58.95 63.26 5383
w/ post-hoc pruning 84.32 82.89 83.60 66.83 61.23 63.88 3104

Batch baseline 85.14 81.91 83.52 72.64 60.13 65.76 6323
w/ MAXVOTE 84.04 82.25 83.14 72.79 64.86 68.55 2588
w/ CONSENSUSVOTE 84.51 82.23 83.36 72.99 63.45 67.84 2446
w/ pruning 85.58 83.51 84.53 75.15 65.97 70.19 2791
w/ MAXVOTE + pruning 84.50 82.89 83.69 72.91 66.40 69.47 2186
w/ CONSENSUSVOTE + pruning 85.22 83.00 84.10 75.65 66.15 70.55 2101

Table 1: Ablation study using cross-validation on the ORACLE corpus training data. We report mean precision
(P), recall (R) and harmonic mean (F1) of execution accuracy on single sentences and sequences of instructions
and mean lexicon sizes. Bold numbers represent the best performing method on a given metric.

Final results Single sentence Sequence Lexicon
P R F1 P R F1 size

SAIL

Chen and Mooney (2011) 54.40 16.18
Chen (2012) 57.28 19.18

+ additional data 57.62 20.64
Kim and Mooney (2012) 57.22 20.17
Kim and Mooney (2013) 62.81 26.57
Artzi and Zettlemoyer (2013b) 67.60 65.28 66.42 38.06 31.93 34.72 10051
Our Approach 66.67 64.36 65.49 41.30 35.44 38.14 2873

ORACLE Artzi and Zettlemoyer (2013b) 81.17 (0.68) 78.63 (0.84) 79.88 (0.76) 68.07 (2.72) 58.05 (3.12) 62.65 (2.91) 6213 (217)

Our Approach 79.86 (0.50) 77.87 (0.41) 78.85 (0.45) 76.05 (1.79) 68.53 (1.76) 72.10 (1.77) 2365 (57)

Table 2: Our final results compared to previous work on the SAIL and ORACLE corpora. We report mean precision
(P), recall (R), harmonic mean (F1) and lexicon size results and standard deviation between runs (in parenthesis)
when appropriate. Our Approach stands for batch learning with a consensus voting and pruning. Bold numbers
represent the best performing method on a given metric.

each experiment five times and report mean preci-
sion, recall,5 harmonic mean (F1) and lexicon size.
For held-out test results we also report standard
deviation. For the baseline online experiments we
shuffled the training data between runs.

6 Results

Table 1 shows ablation results for 5-fold cross-
validation on the ORACLE training data. We
evaluate against the online learning algorithm of
Artzi and Zettlemoyer (2013b), an extension of it
to include post-hoc pruning and a batch baseline.
Our best sequence execution development result
is obtained with CONSENSUSVOTE and pruning.
The results provide a few insights. First, sim-
ply switching to batch learning provides mixed re-
sults: precision increases, but recall drops and the
learned lexicon is larger. Second, adding pruning
results in a much smaller lexicon, and, especially
in batch learning, boosts performance. Adding
voting further reduces the lexicon size and pro-
vides additional gains for sequence execution. Fi-
nally, while MAXVOTE and CONSENSUSVOTE

give comparable performance on their own, CON-
SENSUSVOTE results in more precise and compact

5Recall is identical to accuracy as reported in prior work.

models when combined with pruning.

Table 2 lists our test results. We significantly
outperform previous state of the art on both cor-
pora when evaluating sequence accuracy. In both
scenarios our lexicon is 60-70% smaller. In con-
trast to the development results, single sentence
performance decreases slightly compared to Artzi
and Zettlemoyer (2013b). The discrepancy be-
tween single sentence and sequence results might
be due to the beam search performed when execut-
ing sequences of instructions. Models with more
compact lexicons generate fewer logical forms for
each sentence: we see a decrease of roughly 40%
in our models compared to Artzi and Zettlemoyer
(2013b). This is especially helpful during se-
quence execution, where we use a beam size of
10, resulting in better sequences of executions. In
general, this shows the potential benefit of using
more compact models in scenarios that incorpo-
rate reasoning about parsing uncertainty.

To illustrate the types of errors avoided with
voting and pruning, Table 3 describes common
error classes and shows example lexical entries
for batch trained models with CONSENSUSVOTE

and pruning and without. Quantitatively, the mean
number of entries per string on development folds

String
lexical entries

Example categoriesBatch With voting
baseline and pruning

The algorithm often treats common bigrams as multiword phrases, and later learns the more general separate entries.
Without pruning the initial entries remain in the lexicon and compete with the correct ones during inference.
octagon carpet 45 0 N : λx.wall(x) N : λx.hall(x)

N : λx.honeycomb(x)
carpet 51 5 N : λx.hall(x)

N/N : λf.λx.x == argmin(f, λy.dist(y))
octagon 21 5 N : λx.honeycomb(x) N : λx.cement(x)

ADJ : λx.honeycomb(x)

We commonly see in the lexicon a long tail of erroneous entries, which compete with correctly learned ones. With voting
and pruning we are often able to avoid such noisy entries. However, some noise still exists, e.g., the entry for “intersection”.
intersection 45 7 N : λx.intersection(x) S\N : λf.intersect(you, (f))

AP : λa.len(a, 1) N/NP : λx.λy.intersect(y, x)
twice 46 2 AP : λa.len(a, 2) AP : λa.pass(a,A(λx.empty(x)))

AP : λa.pass(a,A(λx.hall(x)))
stone 31 5 ADJ : λx.stone(x) ADJ : λx.brick(x)

ADJ : λx.honeycomb(x) NP/N : λf.A(f)

Not all concepts mentioned in the corpus are relevant to the task and some of these are not semantically modeled. However,
the baseline learner doesn’t make this distinction and induces many erroneous entries. With voting the model better handles
such cases, either by pairing such words with semantically empty entries or learning no entries for them. During inference
the system can then easily skip such words.
now 28 0 AP : λa.len(a, 3) AP : λa.direction(a, forward)
only 38 0 N/NP : λx.λy.intersect(y, x)

N/NP : λx.λy.front(y, x)
here 31 8 NP : you S/S : λx.x

S\N : λf.intersect(you,A(f))

Without pruning the learner often over-splits multiword phrases and has no way to reverse such decisions.
coat 25 0 N : λx.intersection(x) ADJ : λx.hatrack(x)
rack 45 0 N : λx.hatrack(x) N : λx.furniture(x)
coat rack 55 5 N : λx.hatrack(x) N : λx.wall(x)

N : λx.furniture(x)

Voting helps to avoid learning entries for rare words when the learning signal is highly ambiguous.
orange 20 0 N : λx.cement(x) N : λx.grass(x)
pics of towers 26 0 Nλx.intersection(x) N : λx.hall(x)

Table 3: Example entries from a learned ORACLE corpus lexicon using batch learning. For each string we
report the number of lexical entries without voting (CONSENSUSVOTE) and pruning and with, and provide a few
examples. Struck entries were successfully avoided when using voting and pruning.

decreases from 16.77 for online training to 8.11.
Finally, the total computational cost of our ap-

proach is roughly equivalent to online approaches.
In both approaches, each pass over the data makes
the same number of inference calls, and in prac-
tice, Artzi and Zettlemoyer (2013b) used 6-8 it-
erations for online learning while we used 10. A
benefit of the batch method is its insensitivity to
data ordering, as expressed by the lower standard
deviation between randomized runs in Table 2.6

7 Related Work

There has been significant work on learning for se-
mantic parsing. The majority of approaches treat
grammar induction and parameter estimation sep-
arately, e.g. Wong and Mooney (2006), Kate and
Mooney (2006), Clarke et al. (2010), Goldwasser
et al. (2011), Goldwasser and Roth (2011), Liang

6Results still vary slightly due to multi-threading.

et al. (2011), Chen and Mooney (2011), and Chen
(2012). In all these approaches the grammar struc-
ture is fixed prior to parameter estimation.

Zettlemoyer and Collins (2005) proposed the
learning regime most related to ours. Their learner
alternates between batch lexical induction and on-
line parameter estimation. Our learning algo-
rithm design combines aspects of previously stud-
ied approaches into a batch method, including
gradient updates (Kwiatkowski et al., 2010) and
using weak supervision (Artzi and Zettlemoyer,
2011). In contrast, Artzi and Zettlemoyer (2013b)
use online perceptron-style updates to optimize a
margin-based loss. Our work also focuses on CCG
lexicon induction but differs in the use of corpus-
level statistics through voting and pruning for ex-
plicitly controlling the size of the lexicon.

Our approach is also related to the grammar in-
duction algorithm introduced by Carroll and Char-

niak (1992). Similar to our method, they process
the data using two batch steps: the first proposes
grammar rules, analogous to our step that gener-
ates lexical entries, and the second estimates pars-
ing parameters. Both methods use pruning after
each iteration, to remove unused entries in our ap-
proach, and low probability rules in theirs. How-
ever, while we use global voting to add entries
to the lexicon, they simply introduce all the rules
generated by the first step. Their approach also
relies on using disjoint subsets of the data for the
two steps, while we use the entire corpus.

Using voting to aggregate evidence has been
studied for combining decisions from an ensem-
ble of classifiers (Ho et al., 1994; Van Erp and
Schomaker, 2000). MAXVOTE is related to ap-
proval voting (Brams and Fishburn, 1978), where
voters are required to mark if they approve each
candidate or not. CONSENSUSVOTE combines
ideas from approval voting, Borda counting, and
instant-runoff voting. Van Hasselt (2011) de-
scribed all three systems and applied them to pol-
icy summation in reinforcement learning.

8 Conclusion

We considered the problem of learning for se-
mantic parsing, and presented voting and pruning
methods based on corpus-level statistics for induc-
ing compact CCG lexicons. We incorporated these
techniques into a batch modification of an exist-
ing learning approach for joint lexicon induction
and parameter estimation. Our evaluation demon-
strates that both voting and pruning contribute to-
wards learning a compact lexicon and illustrates
the effect of lexicon quality on task performance.

In the future, we wish to study various aspects
of learning more robust lexicons. For example, in
our current approach, words not appearing in the
training set are treated as unknown and ignored at
inference time. We would like to study the bene-
fit of using large amounts of unlabeled text to al-
low the model to better hypothesize the meaning
of such previously unseen words. Moreover, our
model’s performance is currently sensitive to the
set of seed lexical templates provided. While we
are able to learn the meaning of new words, the
model is unable to correctly handle syntactic and
semantic structures not covered by the seed tem-
plates. To alleviate this problem, we intend to fur-
ther explore learning novel lexical templates.

Acknowledgements

We thank Kuzman Ganchev, Emily Pitler, Luke
Zettlemoyer, Tom Kwiatkowski and Nicholas
FitzGerald for their comments on earlier drafts,
and the anonymous reviewers for their valuable
feedback. We also wish to thank Ryan McDon-
ald and Arturas Rozenas for their valuable input
about voting procedures.

References
Y. Artzi and L.S. Zettlemoyer. 2011. Bootstrapping se-

mantic parsers from conversations. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing.

Y. Artzi and L.S. Zettlemoyer. 2013a. UW SPF: The
University of Washington Semantic Parsing Frame-
work.

Y. Artzi and L.S. Zettlemoyer. 2013b. Weakly super-
vised learning of semantic parsers for mapping in-
structions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1(1):49–62.

S.J. Brams and P.C. Fishburn. 1978. Approval voting.
The American Political Science Review, pages 831–
847.

Q. Cai and A. Yates. 2013. Semantic parsing free-
base: Towards open-domain semantic parsing. In
Proceedings of the Joint Conference on Lexical and
Computational Semantics.

G. Carroll and E. Charniak. 1992. Two experi-
ments on learning probabilistic dependency gram-
mars from corpora. Working Notes of the Workshop
Statistically-Based NLP Techniques.

D.L. Chen and R.J. Mooney. 2011. Learning to in-
terpret natural language navigation instructions from
observations. In Proceedings of the National Con-
ference on Artificial Intelligence.

D.L. Chen. 2012. Fast online lexicon learning for
grounded language acquisition. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics.

S. Clark and J. R. Curran. 2007. Wide-coverage ef-
ficient statistical parsing with CCG and log-linear
models. Computational Linguistics, 33(4):493–552.

J. Clarke, D. Goldwasser, M. Chang, and D. Roth.
2010. Driving semantic parsing from the world’s re-
sponse. In Proceedings of the Conference on Com-
putational Natural Language Learning.

D. Goldwasser and D. Roth. 2011. Learning from
natural instructions. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence.

D. Goldwasser, R. Reichart, J. Clarke, and D. Roth.
2011. Confidence driven unsupervised semantic
parsing. In Proceedings of the Association of Com-
putational Linguistics.

T.K. Ho, J.J. Hull, and S.N. Srihari. 1994. Decision
combination in multiple classifier systems. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, pages 66–75.

R.J. Kate and R.J. Mooney. 2006. Using string-kernels
for learning semantic parsers. In Proceedings of
the Conference of the Association for Computational
Linguistics.

J. Kim and R.J. Mooney. 2012. Unsupervised pcfg in-
duction for grounded language learning with highly
ambiguous supervision. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

J. Kim and R. J. Mooney. 2013. Adapting discrimi-
native reranking to grounded language learning. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics.

J. Krishnamurthy and T. Mitchell. 2012. Weakly su-
pervised training of semantic parsers. In Proceed-
ings of the Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning.

N. Kushman and R. Barzilay. 2013. Using semantic
unification to generate regular expressions from nat-
ural language. In Proceedings of the Human Lan-
guage Technology Conference of the North Ameri-
can Association for Computational Linguistics.

T. Kwiatkowski, L.S. Zettlemoyer, S. Goldwater, and
M. Steedman. 2010. Inducing probabilistic CCG
grammars from logical form with higher-order uni-
fication. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.

T. Kwiatkowski, L.S. Zettlemoyer, S. Goldwater, and
M. Steedman. 2011. Lexical Generalization in CCG
Grammar Induction for Semantic Parsing. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing.

M. Lewis and M. Steedman. 2013. Combined distribu-
tional and logical semantics. Transactions of the As-
sociation for Computational Linguistics, 1(1):179–
192.

P. Liang, M.I. Jordan, and D. Klein. 2011. Learn-
ing dependency-based compositional semantics. In
Proceedings of the Conference of the Association for
Computational Linguistics.

M. MacMahon, B. Stankiewics, and B. Kuipers. 2006.
Walk the talk: Connecting language, knowledge, ac-
tion in route instructions. In Proceedings of the Na-
tional Conference on Artificial Intelligence.

C. Matuszek, N. FitzGerald, L.S. Zettlemoyer, L. Bo,
and D. Fox. 2012. A joint model of language
and perception for grounded attribute learning. In
Proceedings of the International Conference on Ma-
chine Learning.

M. Steedman. 1996. Surface Structure and Interpreta-
tion. The MIT Press.

M. Steedman. 2000. The Syntactic Process. The MIT
Press.

M. Van Erp and L. Schomaker. 2000. Variants of the
borda count method for combining ranked classifier
hypotheses. In In the International Workshop on
Frontiers in Handwriting Recognition.

H. Van Hasselt. 2011. Insights in Reinforcement
Learning: formal analysis and empirical evaluation
of temporal-difference learning algorithms. Ph.D.
thesis, University of Utrecht.

Y.W. Wong and R.J. Mooney. 2006. Learning for se-
mantic parsing with statistical machine translation.
In Proceedings of the Human Language Technology
Conference of the North American Association for
Computational Linguistics.

J.M. Zelle and R.J. Mooney. 1996. Learning to
parse database queries using inductive logic pro-
gramming. In Proceedings of the National Confer-
ence on Artificial Intelligence.

L.S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In Pro-
ceedings of the Conference on Uncertainty in Artifi-
cial Intelligence.

L.S. Zettlemoyer and M. Collins. 2007. Online learn-
ing of relaxed CCG grammars for parsing to logi-
cal form. In Proceedings of the Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning.

