
Generative and Discriminative
Latent Variable Grammars

Slav Petrov
Google Research

New York, NY 10011
slav@google.com

slav@google.com

Abstract

Latent variable grammars take an observed (coarse) treebank and induce more
fine-grained grammar categories, that are better suited for modeling the syntax
of natural languages. Estimation can be done in a generative or a discriminative
framework, and results in the best published parsing accuracies over a wide range
of syntactically divergent languages and domains. In this paper we highlight the
commonalities and the differences between the two learning paradigms.

1 Introduction

Latent variable grammars for parsing [1, 2] model an observed treebank of coarse parse trees with
a model over more refined, but unobserved, derivation trees. Given sentences as input, the parse
trees represent the desired output of the system, while the derivation trees represent the typically
much more complex underlying syntactic processes. For example, the single treebank category NP
(noun phrase) may be better modeled by several finer categories representing subject NPs, object
NPs, and so on. Rather than attempting to manually specify these fine-grained subcategories, we
automatically split each category into k subcategories (e.g. NP1 - NPk) and induce them from data.

Learning latent variable grammars therefore encompasses two tasks: determining the number of sub-
categories for each observed grammar category (some categories are more complex than others and
we therefore expect them to have more subcategories), and learning the parameters of the grammar
(i.e. the probabilities of the different grammar productions). In this paper, we review our past work
on both generative [2, 3], as well as, discriminative [4, 5] latent variable grammars. While the final
parsing accuracies are comparable, we highlight the unique challenges involved in estimating the
models under the different paradigms. In our generative approach [2], we constrain model complex-
ity using a split-merge heuristic and use the EM algorithm for parameter estimation. Alternatively,
we can also accomplish both tasks together by including a prior in our objective function. In [3], we
take a Bayesian standpoint and use a sparse Dirichlet prior and variational EM for learning. In our
discriminative work [5], we include an L1-regularization term in our objective function, which we
maximize using numerical optimization (L-BFGS).

In addition to reviewing the technical differences of learning generative and discriminative latent
variable grammars, we also compare the resulting grammars with each other. We show that even
though the final accuracies of the two approaches are usually comparable, the underlying models are
quite different and make different types of errors.

2 Latent Variable Grammars

In latent variable parsing, we view the training trees as a coarse trace of the true underlying pro-
cesses. By augmenting the trees with a latent variable at each node (see Figure 1), we can model

1

S

NP

P

He

VP

V

was

ADJP

right

.

.

(a) Parse tree T , Sentence w

S-x

NP-x

P-x

He

VP-x

V-x

was

ADJP-x

right

.-x

.

(b) Derivations t : T

Grammar G

S0 →NP0 VP0 ?

S0 →NP1 VP0 ?

S0 →NP0 VP1 ?

S0 →NP1 VP1 ?

S1 →NP0 VP0 ?

. . .

(c) Parameters θ

Figure 1: The observed parse trees T (a) are split into derivations t (b). Learning latent variable
grammars involves determining the set of grammar productions/features and their parameters (c).

this more refined process. Our log-linear grammars are parametrized by a vector θ which is indexed
by productions X → γ. The conditional probability of a derivation t given a sentence w is then:

Pθ(t|w) =
1

Z(θ, w)

∏
X→γ∈t

eθX→γ =
1

Z(θ, w)
eθTf(t), (1)

where Z(θ, w) is the partition function and f(t) is a vector indicating how many times each produc-
tion occurs in the derivation t. The inside/outside algorithm gives us an efficient way of summing
over this exponential set of derivations. We will consider generative grammars, where the param-
eters θ are set to maximize the joint likelihood of the training sentences and their parse trees, and
discriminative grammars, where the parameters θ are set to maximize the likelihood of the correct
parse tree (vs. all possible trees) given a sentence. Note that this is merely a comparison of different
estimators, as probabilistic and weighted CFGs are equivalent [6].

2.1 Generative Grammars

Generative latent variables grammars can be seen as tree structured hidden Markov models. A
simple EM algorithm [1] allows us to learn parameters for generative grammars which maximize
the log joint likelihood of the training sentences w and parse trees T :

Ljoint(θ) = log
∏

i

Pθ(wi, Ti) = log
∏

i

∑
t:Ti

Pθ(wi, t), (2)

where t are derivations (over split categories) corresponding to the observed parse tree (over unsplit
categories). In the E-Step we compute inside/outside scores over the set of derivations corresponding
to the observed gold tree (in linear time), which allows us to compute expectations over the gram-
mar productions.These expectations are then normalized in the M-Step to update the production
probabilities φX→γ = eθX→γ to their maximum likelihood estimates:

φX→γ =
∑

T Eθ[fX→γ(t)|T]∑
γ′

∑
T Eθ[fX→γ′(t)|T]

(3)

Here, Eθ [fX→γ(t)|T] denotes the expected count of the production (or feature) X → γ with respect
to Pθ in the set of derivations t, which are consistent with the observed parse tree T . Similarly, we
will write Eθ [fX→γ(t)|w] for the expectation over all derivations of the sentence w.

To learn grammar complexity, we use a simple, yet powerful split-merge approach [2]. We iteratively
refine the grammars in a hierarchical way. In each stage, all symbols are split in two, e.g. NP
becoming NP1 and NP2, and then fit the model using the EM algorithm described above. After a
splitting stage, half of the splits are rolled back based on (an approximation) to their likelihood gain.
Empirically the gains level off after six split-merge rounds, and learning a generative grammar takes
about 20 hours on a single CPU.

2.2 Discriminative Grammars

Discriminative latent variables grammars can be seen as conditional random fields [7] over trees.
For discriminative grammars, we maximize the log conditional likelihood:

Lcond(θ) = log
∏

i

Pθ(Ti|wi) = log
∏

i

∑
t:Ti

eθTf(t)

Z(θ, wi)
(4)

2

≤ 40 words all
Parser F1 EX F1 EX

ENGLISH
Single-Scale Generative Latent Variable Grammars [1] 86.8 32.8 86.3 30.3
Single-Scale Discriminative Latent Variable Grammars [4] 88.8 35.7 88.3 33.1
Multi-Scale Discriminative Latent Variable Grammars [5] 90.0 40.1 89.4 37.7
Split-Merge Generative Latent Variable Grammars [10] 90.6 39.1 90.1 37.1
Lexicalized Generative Grammars [11] 90.3 39.6 89.7 37.2
Discriminative Reranking after Lexicalized Grammars [12] 92.3 46.2 91.7 43.5

GERMAN
Split-Merge Generative Latent Variable Grammars [10] 80.8 40.8 80.1 39.1
Multi-Scale Discriminative Latent Variable Grammars [5] 81.5 45.2 80.7 43.9
Lexicalized Generative Grammars [13] F1 76.3 -

Table 1: Test set parsing accuracies for latent variable grammars and other state-of-the-art methods.

We directly optimize this non-convex objective function using a numerical gradient based method
(LBFGS [8] in our implementation). Fitting the log-linear model involves the following derivatives:

∂Lcond(θ)
∂θX→γ

=
∑

i

(
Eθ [fX→γ(t)|Ti]− Eθ[fX→γ(t)|wi]

)
, (5)

where the first term is the expected count of a production in derivations corresponding to the correct
parse tree and the second term is the expected count of the production in all parses.

One of the main challenges in estimating discriminative grammars is that the computation of the
derivatives requires repeatedly taking expectations over all parses of all sentences in the training set.
To make this computation practical on large data sets, we extend the idea of coarse-to-fine parsing [9]
to handle the repeated parsing of the same sentences. We cache computations of similar quantities
between training iterations, allowing the efficient approximation of feature count expectations. Even
with these approximations, training takes about three days on an 8-core CPU.

In practice, we add an L1-regularization term to the objective function in Eq. 4 in order to control the
complexity of the grammars. Multi-scale grammars [5] then take advantage of the sparsity produced
by L1-regularization by allowing some productions to reference fine categories, while others to
reference coarse categories. As a result, a category such as NP can be complex in some regions of
the grammar while remaining simpler in other regions, giving extremely compact grammars.

3 Experiments

To compare generative and discriminative latent variable grammars, we ran experiments on a broad
range of languages. Due to space reasons Table 1 contains only an excerpt of our empirical results,
and we refer the interested reader to [14] for a complete overview.

Figure 2 shows how parsing performance improves with the addition of more latent categories. In
general, discriminatively trained grammars give better performance than their generative cousins,
even when using an order of magnitude fewer parameters. However, the final accuracies of the
generative models are slightly higher in terms of F1 because the split-merge approach seems to
allocate the complexity in more meaningful way. Generative grammars are also significantly (20
times) faster to train, but the discriminative grammars allow for a convenient integration of additional
(overlapping) features.

It is also interesting to examine how the complexity is allocated. While most categories have similar
complexity in the two cases, the complexity of the two most rened phrasal categories are ipped.
Generative grammars split NPs most highly, discriminative grammars split the VP. This distinction
seems to be because the complexity of VPs is more syntactic (e.g. complex verb subcategorization),
while that of NPs is more lexical (noun choice is generally higher entropy than verb choice).

We also examined the most likely parse trees produced by the different grammars and observed only
a small overlap between the generative and discriminative grammars, despite their comparable F1
scores. Even in their top 50 lists, the overlap was less than 30%, suggesting that the grammars are
modeling very different, and potentially complementary, linguistic phenomena.

3

75

80

85

90

10000 100000 1000000

P
ar

si
ng

 a
cc

ur
ac

y
(F

1)

Number of grammar productions

Discriminative Multi-Scale Grammars
+ Additional Features

Generative Split-Merge Grammars
Flat Discriminative Grammars

Flat Generative Grammars

N
P

V
P

PP S SB
A

R
A

D
JP

A
D

V
P

Q
P

PR
N

Generative 32 24 20 12 12 12 8 7 5subcategories
Discriminative 19 32 20 14 14 8 7 9 6production parameters
Note that subcategories are compared to production
parameters, indicating that the number of parameters
grows cubicly in the number of subcategories for
generative grammars, while growing linearly for
multi-scale discriminative grammars.

G1
G2
G3

D1

87% 88% 89%

F1 Score

30% 35% 40%

Exact Match

88% 89.5% 91%

NP

88% 89.5% 91%

VP

80% 82% 84%

PP

88% 90.5% 93%

QP

Figure 2: Top Left: Parsing accuracy vs. number of grammar productions. Top Right: Grammar
complexity allocation. Bottom Row: Breakdown of different accuracy measures for three generative
grammars (G1-G3), and one discriminative grammar (D1).

Figure 2 also shows a more detailed error analysis for three generative and one discriminative gram-
mar after three split-merge rounds. Not so surprisingly, there is a large, and maybe systematic, dif-
ference in the errors made by the generative and discriminative models. Interestingly, there is also
a large difference between the different generative models that differ only in the random seed used
for initialization. We leave the investigation of ensemble methods that can combine the strengths of
the different grammars for future work.

References
[1] T. Matsuzaki, Y. Miyao, and J. Tsujii. Probabilistic CFG with latent annotations. In ACL, 2005.
[2] S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact, and interpretable tree anno-

tation. In ACL ’06, 2006.
[3] P. Liang, S. Petrov, M. I. Jordan, and D. Klein. The infinite PCFG using hierarchical Dirichlet processes.

In EMNLP ’07, 2007.
[4] S. Petrov and D. Klein. Discriminative log-linear grammars with latent variables. In NIPS ’08, 2008.
[5] S. Petrov and D. Klein. Sparse multi-scale grammars for discriminative latent variable parsing. In EMNLP

’08, 2008.
[6] N. A. Smith and M. Johnson. Weighted and probabilistic context-free grammars are equally expressive.

Computational Lingusitics, 2007.
[7] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic models for segment-

ing and labeling sequence data. In ICML ’01, 2001.
[8] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.
[9] E. Charniak, S. Goldwater, and M. Johnson. Edge-based best-first chart parsing. 6th Workshop on Very

Large Corpora, 1998.
[10] S. Petrov and D. Klein. Improved inference for unlexicalized parsing. In NAACL, 2007.
[11] E. Charniak and M. Johnson. Coarse-to-Fine N-Best Parsing and MaxEnt Discriminative Reranking. In

ACL’05, 2005.
[12] L. Huang. Forest reranking: Discriminative parsing with non-local features. In ACL ’08, 2008.
[13] A. Dubey. What to do when lexicalization fails: parsing German with suffix analysis and smoothing. In

ACL ’05, 2005.
[14] S. Petrov. Coarse-to-Fine Natural Language Processing. PhD thesis, UC Berkeley, 2009.

4

