
Training Structured Prediction Models
with Extrinsic Loss Functions

Keith Hall Ryan McDonald Slav Petrov
Google, New York

{kbhall,ryanmcd,slav}@google.com

Abstract

We present an online learning algorithm for training structured prediction mod-
els with extrinsic loss functions. This allows us to extend a standard supervised
learning objective with additional loss-functions, either based on intrinsic or task-
specific extrinsic measures of quality. We present experiments with sequence
models on part-of-speech tagging and named entity recognition tasks, and with
syntactic parsers on dependency parsing and machine translation reordering tasks.

1 Introduction

It is well known that the performance of prediction models suffers when there is a mismatch between
the training and test domains. This is especially the case in Natural Language Processing, where
the labeled training data is often decades old, while the models are typically applied to recently
generated webtext.

In this paper we extend a standard supervised learning objective with additional loss-functions. We
make no assumptions about the loss-functions. In particular, we do not need them to decompose over
the model structure or factor in any specific way. Additionally, each loss-function can be associated
with a distinct dataset. Our augmented-loss training framework (Section 2) simply iterates over the
various loss-functions and training examples in round-robin fashion, performing perceptron-style
updates: if the model prediction is already optimal, no update is performed; however, if there is
a better labeling, then the model parameters are updated. We describe how this update can be
performed when the optimal loss is unknown and sketch a convergence proof for the separable case.

The additional loss-functions can provide a signal for adapting to new domains or to specific tasks,
or both. For example, it might be too expensive to annotate sentences from a new domain with part-
of-speech (POS) tags or full syntactic parse trees. However, it might be feasible to obtain partial
annotations, for example specifying the main verb of the sentence. We show in our experiments in
Section 3 that even this single bit of information can provide a big boost in performance, closing
more than half of the gap between in-domain and out-of-domain POS tagging and parsing perfor-
mance. We also present an experiment where a syntactic parser is tuned specifically for the task of
machine translation reordering. Using an extrinsic loss (that does not decompose over the model
structure), we are able to obtain significant improvements in machine translation reodering score, as
well as downstream machine translation quality.

Our approach is similar to the perceptron-based learning of phrase-translation parameters presented
in [1]. However, their main goal is to incorporate additional features into the model, whereas we
are interested in adapting the existing model parameters. Constraint Driven Learning [2] optimizes a
loss function with the addition of constraints based on unlabeled data. The augmented-loss algorithm
can be viewed as an online version of this algorithm. Direct Loss Minimization [3] is also highly
related, however, we jointly optimize multiple loss functions and do not make any assumptions about
the decomposability of the loss. Additionally, our algorithm can be viewed as an instance of Sample
Rank [4] extended to multiple loss functions, both intrinsic and task-specific.

1



2 Methodology

The augmented-loss algorithm [5] is a general mechanism for incorporating multiple loss functions
in online learning. We review it here in the context of the structured perceptron [6]. The structured
perceptron is an online learning algorithm which takes as input: (1) a set of training examples
di = (xi, yi) consisting of input sentences xi and an outputs yi; and (2) a loss-function, L(ŷ, y),
that measures the cost of predicting output ŷ relative to the gold standard y, typically the 0/1 loss.
Learning proceeds by predicting a structured output ŷ given the current model parameters θ: ŷ =
Fθ(x) = arg maxy∈Yx

θ · Φ(y, x), where Φ is an application specific mapping from a structured
output y for sentence x to a high dimensional feature space. If the predicted structure is incorrect
(L(ŷ, y) > 0) the model is updated by rewarding features that fire in the gold-standard Φ(y, x), and
discounting features that fire only in the predicted output, Φ(ŷ, x),

2.1 Augmented-Loss Training

Augmented-loss training (see the Appendix for pseudocode) extends the structured perceptron by al-
lowing for (1) multiple datasets D1, . . . ,DM ; (2) multiple loss functions L1, . . . , LM which are as-
sociated with these datasets; and (3) a schedule for processing examples from each of these datasets.
Note that the label sets for the different datasets will often be different, or can even be empty. The
training procedure is strictly guided by the loss Lj , which can be any task-specific metric. The algo-
rithm is effectively the same as the perceptron, the primary difference being that if Lj is an extrinsic
loss, we cannot compute the standard updates since we do not necessarily know the correct output.
The algorithm iterates over the training examples (and loss functions) according to the schedule.

2.2 Inline Ranker Training

We can use inline ranker training [5] when the lossLj is not a standard supervised loss and we do not
have access to the correct output. For ease of exposition, we will assume that we have access to a cost
function and that the loss is computed as the difference in cost between two different outputs. This
formulation is general and does not restrict our choice of loss functions, in particular it encompasses
losses that do not decompose according to the model structure. If we could enumerate all outputs
(e.g. in atomic classification), then we could use the cost function to determine the optimal output.
For structured prediction problems, however, the output space is exponential. We therefore restrict
ourselves to searching over a candidate set of output structures. In practice we use a ranked k-
best list, but any type of samples from the output space could be used instead [4]. Fk-best

θ (xi) =
{ŷ1
i , . . . , ŷ

k
i }. If the lowest-cost output in Fk-best

θ (xi) is not the 1-best, then Fk-best
θ (xi) is taken

to be the correct output structure yi, and the 1-best output is taken to be an incorrect prediction, and
we take a perceptron step. If on the other hand the 1-best parse has the lowest cost, then our current
model is assumed to be optimal and we move to the next training example according to the schedule.

Similarly to the regular perceptron, we only perform updates when there is an error – when the 1-best
output has a higher cost than any other output in the k-best list. The intuition behind this method is
that in the presence of only a cost function and a k-best list, the parameters will be updated towards
the output structure that has the lowest cost, which over time will move the parameters of the model
to a place with low extrinsic loss. An advantage of this approach is that the scoring function does
not need to be factored, requiring no internal knowledge of the function itself. Furthermore, this
approach can be applied to any structured prediction algorithm which can generate k-best lists.

2.3 Convergence

Assuming that the training set is loss-separable, one can show that augmented-loss training will
converge [5]. The convergence proof is similar to the original perceptron proof and does not assume
anything about the loss. In particular, every instance (xi, yi) could use a different loss. It is only
required that the loss for a specific input-output pair is fixed throughout training. However, the proof
does make the assumption that for any θ that exists during training, but before convergence, there is
at least one example in the training data where the k-best list is large enough to include one output
with a lower loss when ŷ1 does not have the optimal minimal loss. In practice, this seems not to be
a problem as we will see in the experiments presented in the next section.

2



Question Tagging Accuracy
PTB supervised 89.77
QTB supervised 93.63
augmented-loss 91.92

Question Parsing LAS UAS Root-F1
PTB supervised 67.97 73.52 47.60
QTB supervised 84.59 89.59 91.06
augmented-loss 76.27 86.42 83.41

Table 1: Augmented-loss training can be used to adapt POS taggers and parsers to new domains.

3 Experiments

In our experiments we use augmented-loss training (1) for adapting POS taggers and parsers trained
on newswire to a question domain and (2) for task specific adaptation of POS taggers used in named
entity recognition (NER) systems and of parsers used in a machine translation reordering systems.

3.1 Models & Datasets

The augmented-loss framework can be used with any structured prediction model that can be trained
with the perceptron. We use the following models in our experiments:

Part-of-Speech Tagger: A linear chain Conditional Random Field (CRF) [7] with prefix, suffix and
word cluster based features. The word clusters are generated on a large unlabeled newswire corpus.

Named Entity Tagger: A linear chain CRF that uses POS tags in addition to prefix, suffix, capital-
ization and word cluster features. The same clusters as in the POS tagger are used.

Syntactic Parser: An implementation of the transition-based dependency parsing framework [8]
using an arc-eager transition strategy and trained using the perceptron algorithm as in [9]. Beams
with varying sizes can be used to produce k-best lists.

We utilize a few different datasets in our experiments. Depending on the experiment, we will use
either the full annotation or derive a weaker signal for our additional loss functions.

Treebank Data: The Penn Wall Street Journal Treebank (PTB) [10], the Brown corpus, and the
Question Treebank (QTB) [11], provide labeled data for our part-of-speech tagging and parsing
experiments. We convert the treebanks to dependency format using the Stanford converter [12].

Named Entity Data: The 2003 CoNLL shared task on Named Entity Recognition [13] provides an
English dataset with labels for four different types of named entities.

Reordering Data: The dataset of Talbot et al. [14] provides word-level alignments between English
and Japanese sentences that can be used in for adapting parsers for a machine translation task.

3.2 Semi-Supervised Domain Adaptation

One of the main applications of the augmented-loss framework is to improve the domain portability
of structured prediction systems in the presence of partially labeled data. Consider, for example, the
case of questions. It has been observed that part-of-speech taggers and dependency parsers tend to
do quite poorly on questions due to their limited occurence in the newswire training data [15, 16].
Table 1 shows that models trained on the PTB perform much worse on the QTB test data, than
models trained on the QTB, even though the PTB training set is 20 times larger.

Because of the difference in word order between declarative sentences and questions, the models
often cannot even determine the main verb of questions. We therefore consider a scenario where
it is possible to ask annotators to determine the main verb of a given question. While full part-
of-speech and syntactic parse tree annotation requires extensive linguistic training, such a question
is easy to answer for anybody speaking the language. In practice, we used the QTB training set
stripped of all annotations except the label of the main verb for each sentence. Our augmented-loss
function in this case is a simple binary function: 0 if the model prediction (tag sequence or parse
tree) has the correct main verb and 1 if it does not. Thus, the algorithm will select the first prediction
in the k-best list that has the correct main verb as a proxy to the gold standard labeling. The last row
in Table 1 shows that by having the main verb annotated in each sentence and iterating between the

3



Named Entity Recognition F1
supervised 84.10
augmented-loss-1 84.51
augmented-loss-2 84.87

MT Reordering Exact Reorder
PTB + Brown + QTB 35.29 76.49
1.0×augmented-loss 39.02 78.39
2.0×augmented-loss 39.58 78.67

Table 2: Augmented-loss training can be used to adapt structured models to specific tasks.

supervised objective and the augmented loss objective, half of the errors of the original model can
be eliminated. It is important to point out that these improvements are not limited to simply better
main verb predictions. Due to the fact that the structured prediction models make many decisions
jointly, these decisions influence each other and improvements are seen across the board.

3.3 Named Entity Recognition

Most named entity recognition systems rely heavily on features derived from a part-of-speech tagger.
In such a system the accuracy of the POS tagger is only indirectly relevant – only as much as it helps
NER accuracy. Since the training sets of the POS tagger and NER system are disjoint, we can use
augmented-loss training to adapt the POS tagger to the training domain of the NER system and to
also tune it specifically for being used in an NER system. Because named entities should be labeled
with the POS tag “NNP,” we can define a loss function that penalizes the tagger for not obeying the
named entity annotations. We experimented with two loss functions. The first one is simply the
hamming loss relative to the entity annotation, while the second one also incorporates a term based
on the NER F1-score. As Table 2 shows, both lead to improvements over the non-adapted baseline.

3.4 Machine Translation Reordering

Many statistical machine translation systems use a source-side reordering component, which re-
orders the sentence into target-side word order before translating it [17]. The reordering component
typically uses the syntactic parse of the source sentence and a set of rules to perform the reordering.
While better parsing accuracies tend to lead to better reordering scores, it is clear that certain pars-
ing mistakes will matter more than others. We can use a reordering-based loss function to improve
a parser used in a reordering component of a machine translation system. In our experiments we
parse the input sentence with a statistical dependency parser and then apply a set of hand-written
English-Japanese reordering rules [18]. A set of human generated golden reorderings for aligned
target sentences is then used to compute a reordering score [14] which measures what fraction of
words are in the correct order, similarly to the METEOR scoring metric.

As a baseline, we use a parser trained on the training portions of PTB, Brown, and QTB. For
augmented-loss training, we add extrinsic reordering training data consisting of 10K examples of
English sentences and their correct Japanese word-order, and use the negative of the reordering score
as extrinsic loss. Evaluating on a set of 6338 examples of similarly created reordering data, we ob-
serve improvements as we adjust the schedule to process the extrinsic loss more frequently. The best
result in Table 2 is achieved when we make two augmented-loss updates for every treebank-based
loss update.

4 Conclusions

We presented experiments with the augmented-loss training algorithm [5] and showed that it can be
used to incorporate multiple loss functions. This allows us to adapt structured prediction models to
new domains or specific tasks. The augmented-loss framework supports both intrinsic and extrinsic
losses, allowing for both combinations of objectives. This flexibility makes it possible to tune a
model for a downstream task. The only requirement is a metric which can be defined over outputs
of the downstream application.

4



References
[1] P. Liang, A. Bouchard-Cote, D. Klein, and B. Taskar. An end-to-end discriminative approach to machine

translation. In Proc. of COLING/ACL, 2006.
[2] M.W. Chang, L. Ratinov, and D. Roth. Guiding semi-supervision with constraint-driven learning. In

Proc. of ACL, 2007.
[3] D. McAllester, T. Hazan, and J. Keshet. Direct loss minimization for structured prediction. In Proc. of

NIPS, 2010.
[4] M. Wick, K. Rohanimanesh, K. Bellare, A. Culotta, and A. McCallum. Samplerank: Training factor

graphs with atomic gradients. In Proc. of ICML, 2011.
[5] K. Hall, R. McDonald, J. Katz-Brown, and M. Ringgaard. Training dependency parsers by jointly opti-

mizing multiple objectives. In Proc. of EMNLP, 2011.
[6] M. Collins. Discriminative training methods for hidden markov models: Theory and experiments with

perceptron algorithms. In Proc. of ACL, 2002.
[7] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic models for segment-

ing and labeling sequence data. In Proc. of ICML, 2001.
[8] J. Nivre. Algorithms for deterministic incremental dependency parsing. Computational Linguistics,

34(4):513–553, 2008.
[9] Y. Zhang and S. Clark. A Tale of Two Parsers: Investigating and Combining Graph-based and Transition-

based Dependency Parsing. In Proc. of EMNLP, pages 562–571, 2008.
[10] M. Marcus, B. Santorini, and M.A. Marcinkiewicz. Building a large annotated corpus of english: The

penn treebank. Computational Linguistics, 19:313–330, 1993.
[11] J. Judge, A. Cahill, and J. Van Genabith. Question-bank: Creating a corpus of parse-annotated questions.

In Proc. of ACL, pages 497–504, 2006.
[12] M.C. de Marneffe, B. MacCartney, and C. Manning. Generating typed dependency parses from phrase

structure parses. In Proc. of LREC, Genoa, Italy, 2006.
[13] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the conll-2003 shared task: Language-

independent named entity recognition. In Proc of CoNLL, pages 142–147, 2003.
[14] D. Talbot, H. Kazawa, H. Ichikawa, J. Katz-Brown, M. Seno, and F. Och. A lightweight evaluation

framework for machine translation reordering. In Proc. of the Sixth Workshop on Statistical Machine
Translation, 2011.

[15] A. Subramanya, S. Petrov, and F. Pereira. Efficient graph-based semi-supervised learning of structured
tagging models. In Proc. of EMNLP, 2010.

[16] S. Petrov, P.C. Chang, M. Ringgaard, and H. Alshawi. Uptraining for accurate deterministic question
parsing. In Proc. of EMNLP, pages 705–713, 2010.

[17] M. Collins, P. Koehn, and I. Kučerová. Clause restructuring for statistical machine translation. In Proc.
of ACL, 2005.

[18] P. Xu, J. Kang, M. Ringgaard, and F. Och. Using a dependency parser to improve SMT for Subject-
Object-Verb languages. In Proc. of NAACL, 2009.

5



Appendix

Algorithm 1 Augmented-Loss Perceptron
1: {Input data sets}:
2: D1 = {d1

1 = (x1
1, y

1
1) . . . d1

N1 = (x1
N1 , y

1
N1)},

3: . . .
4: DM = {dM1 = (xM1 , y

M
1 ) . . . dMNM = (xMNM , yMNM )}

5: {Input loss functions: L1 . . . LM}
6: {Initialize indexes: c1 . . . cM = ~0}
7: {Initialize model parameters: θ = ~0}
8: i = 0
9: repeat

10: for j = 1 . . .M do
11: {Check whether to update Lj on iteration i}
12: if Sched(j, i) then
13: {Compute index of instance – reset if cj ≡ N j}
14: cj = [(cj ≡ N j) ? 0 : cj + 1]
15: {Compute structured loss for instance}
16: if Lj is intrinsic loss then
17: ŷ = Fθ(x

j
cj

)

18: if Lj(ŷ, yjcj
) > 0 then

19: θ = θ + Φ(yjcj
)− Φ(ŷ) {yjcj

is a tree}
20: end if
21: else if Lj is an extrinsic loss then
22: {ŷ1, . . . , ŷk} = Fk-best

θ (xi)
23: τ = minτ C(xjcj

, ŷτ , y
j
cj

) {τ is m in const index}
24: Lj(ŷ1, y

j
cj

) = C(xjcj
, ŷ1, y

j
cj

)− C(xjcj
, ŷτ , y

j
cj

)

25: if Lj(ŷ1, yjcj
) > 0 then

26: θ = θ + Φ(ŷτ )− Φ(ŷ1)
27: end if
28: end if
29: end if
30: end for
31: i = i+ 1
32: until converged
33: {Return model θ}

Algorithm 1 presents pseudo-code for the augmented-loss structured perceptron algorithm. The algorithm
is an extension of the structured perceptron, but where there are (1) multiple loss functions being evaluated
L1, . . . , LM ; (2) there are multiple datasets associated with each of these loss functions D1, . . . ,DM ; and (3)
there is a schedule for processing examples from each of these datasets, where Sched(j, i) is true if the jth loss
function should be updated on the ith iteration of training. Note that for data point dji = (x, y), which is the ith

training instance of the jth data set, that y does not necessarily have come from the output space of the intrinsic
dataset. It can either be a task-specific output of interest or even null, in the case where learning will be guided
strictly by the loss Lj . The training algorithm is effectively the same as the perceptron, the primary difference
is that if Lj is an extrinsic loss, we cannot compute the standard updates since we do not necessarily know the
correct output.

The inline reranker (appearing at line 21) uses the currently trained model parameters θ to process the external
input, producing a k-best set of outputs associated with the output-space of the intrinsic data: Fk-best

θ (xi) =

{ŷ1, . . . , ŷk}. We can compute the cost C(xi, ŷ, yi) for all ŷ ∈ Fk-best
θ (xi). If the 1-best parse, ŷ1 has

the lowest cost, then there is no need to update the model parameters. Otherwise, the lowest-cost output in
Fk-best
θ (xi) is taken to be the correct output structure yi, and the 1-best output is taken to be an incorrect

prediction.

6


