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Abstract

We describe a shared task on parsing web
text from the Google Web Treebank. Partic-
ipants were to build a single parsing system
that is robust to domain changes and can han-
dle noisy text that is commonly encountered
on the web. There was a constituency and a
dependency parsing track and 11 sites submit-
ted a total of 20 systems. System combina-
tion approaches achieved the best results, how-
ever, falling short of newswire accuracies by a
large margin. The best accuracies were in the
80-84% range for F1 and LAS; even part-of-
speech accuracies were just above 90%.

1 Introduction

The field of syntactic parsing has seen much
progress over the last two decades. As accuracies
have improved, parsing promises to become an inte-
gral part of downstream applications that can benefit
from high accuracy syntactic analysis. When eval-
uated on standard (newswire) benchmarks, current
parsers achieve accuracies well above 90%. How-
ever, as has been shown in the past (Petrov et al.,
2010; Foster et al., 2011) and is also demonstrated
here, these 90%+ accuracies are limited to heavily
edited domains. In practice, parsing accuracies are
much lower, hovering barely over 80%; even part-of-
speech tagging accuracies are often in the low 90ies.

Most applications that rely on parsing, such as
machine translation, sentiment analysis and infor-
mation extraction need to handle, more often than
not, unedited text. These texts often come from do-
mains common on the web such as blogs, discus-
sion forums, consumer reviews, etc. In order to reli-

ably translate and extract information from the web,
progress must be made in parsing such texts.

There are multiple reasons that parsing the web
is difficult, all of which stem from a mismatch with
the training data, which is typically the Wall Street
Journal (WSJ) portion of the Penn Treebank. Punctu-
ation and capitalization are often inconsistent, mak-
ing it difficult to rely on features that can be predic-
tive for newswire. There is often a lexical shift due
to increased use of slang, technical jargon or other
phenomena. Spelling mistakes and ungrammatical
sentences are not uncommon. Another important
factor is that some syntactic constructions are more
frequent in web text than in newswire: most notably
questions, imperatives, long lists of names and sen-
tence fragments.

The recently constructed Google Web Treebank
(Section 2) provides a manually annotated corpus
for such noisy web texts. It covers five domains and
provides a large set of unlabeled text from each do-
main, and smaller sets (≈ 2,000-4,000 sentences per
domain) annotated with syntactic parse trees in the
style of Ontonotes 4.0. The Google Web Treebank
can be used as a large, high quality test set, making
the hitherto standard test set (WSJ Section 23) ob-
solete after 20 years of intensive use. The primary
purpose of the large corpus of unlabeled sentences
provided with the treebank is to help make semi-
supervised learning and domain adaptation tangible.

In this work we describe a shared task on pars-
ing web text that was held during the spring of 2012.
As described in more detail in Section 3, partici-
pants were provided with the Ontonotes release of
the WSJ treebank and the unlabeled portion of the
Google Web Treebank for training. Two of the la-



Training Development Evaluation
WSJ-train Emails Weblogs WSJ-dev Answers Newsgroups Reviews WSJ-eval

Sentences 30,060 2,450 1,016 1,336 1,744 1,195 1,906 1,640
Tokens 731,678 29,131 24,025 32,092 28,823 20,651 28,086 35,590
Types 35,933 5,478 4,747 5,889 4,370 4,924 4,797 6,685
OOV 0.0% 30.7% 19.6% 11.8% 27.7% 23.1% 29.5% 11.5%

Table 1: Training, development and evaluation data statistics. Shown are the number sentences, tokens and unique
types in the data. OOV is the percentage of tokens in the data set that are not observed in WSJ-train.

Emails Weblogs Answers Newsgroups Reviews
Sentences 1,194,173 524,834 27,274 1,000,000 1,965,350

Tokens 17,047,731 10,356,284 424,299 18,424,657 29,289,169
Types 221,576 166,515 33,325 357,090 287,575

Table 2: Statistics for unlabeled data without any text normalization. These statistics are approximate as both sentence
splitting and tokenization were automatically applied to these data sets.

beled domains were used during development, while
the remaining three were reserved for the final evalu-
ation. 11 sites participated in the shared task, submit-
ting 8 constituency and 12 dependency parsing sys-
tems (Section 4). Many systems built on top of pub-
licly available parsers, potentially combining multi-
ple models, and making use of the unlabeled data via
self-training and word clusters.

Overall, system combination approaches pro-
duced the highest accuracies, which however were
only in the 80-84% range. This is still a positive re-
sult as the baseline parsers – both of which are state-
of-the-art constituency and dependency systems –
only achieved accuracies in the 75-80% range. We
found that there were good correlations between
the performance on the various test domains from
the web, but the correlation to the WSJ newswire
data was much weaker. The results also show that
web data poses significant problems to current part-
of-speech taggers, which achieve accuracies of just
above 90% on the web data. We discuss some addi-
tional trends in Section 5.

2 Google Web Treebank

The Google Web Treebank covers five domains: Ya-
hoo! Answers, Emails, Newsgroups, Local Business
Reviews and Weblogs. These domains were chosen
to cover the different genres commonly found on the
web, as well as different syntactic and stylistic vari-
ations found in written language.

For each domain, first a large set of data was col-

lected (in most cases more than 1 million sentences).
A much smaller subset was then randomly sampled
at the document level and manually annotated with
syntactic parse trees in the style of Ontonotes 4.0
by professional annotators from the Linguistic Data
Consortium (LDC). We additionally subdivided the
labeled data for each domain into a development and
an evaluation half. Statistics for the data used in the
shared task, both labeled and unlabeled, can be seen
in Table 1 and Table 2.

Since the Google Web Treebank is natively a con-
stituency treebank, we used version 2.0 of the Stan-
ford converter (De Marneffe et al., 2006) to con-
vert it to labeled dependencies. Figure 1 shows
a constituency tree from the email domain and its
converted dependency version. This converter has
been primarily developed on the Penn Treebank.
As a result, it is quite robust on WSJ newswire
text. However, there are many cases where the con-
verter breaks down on the web data due to non-
conventional or poor writing conventions. The most
notable case is for coordination and apposition struc-
tures. The Stanford converter typically requires the
explicit inclusion of a conjunction to distinguish be-
tween these two when a conjunction/apposition can
have more than two components. Unfortunately,
many lists and conjunctions in the web data do
not contain such an explicit conjunction, resulting
in many apposition dependency labels that in fact
should be conjunctions. Additionally, as pointed out
by one of the participants (Pitler, 2012), the struc-
ture of the coordination phrase could differ depend-
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Figure 1: Example constituency and dependency trees. As is common practice in constituency parsing, function labels
and empty nodes were available at training time but were not included in the evaluation.

ing on the presence of punctuation at the end of a
conjunction, i.e., “X, Y and Z” versus “X, Y, and
Z”, or the inconsistent inclusion of NP unary produc-
tions. However, instead of systematically or manu-
ally correcting such cases we opted to leave them in
place for replicability reasons. Thus, if one obtains
the Google Web Treebank, then one simply needs to
run the data through the version 2.0 of the Stanford
converter to get the exact data used in the evaluation.

3 Shared Task

Participants in the shared task were provided with
the following sets of data:

1. Sections 02-21 of the WSJ portion of
Ontonotes 4.0 (30,060 parsed sentences).

2. Five sets of unlabeled sentences (27,000 to
2,000,000 sentences per domain).

3. Two development sets from the new Google
Web Treebank (1,016 parsed sentences from
the weblog domain and 2,450 parsed sentences
from the emails domain).

4. Section 22 of the WSJ portion of Ontonotes 4.0
(1,336 parsed sentences).

We used the portion of the WSJ from Ontonotes 4.0
and not the full original treebank as Ontonotes 4.0
and the Google Web Treebank share annotation stan-
dards.1 These standards are slightly different from
the original PTB in aspects such as tokenization and
significantly different in aspects such as noun-phrase
bracketing.

1http://www.ldc.upenn.edu/Catalog/docs/LDC2011T03/

The task was to build the best possible parser by
using only data sets (1) and (2). Data set (3) was pro-
vided as a development set, while the official evalu-
ation set consisted of the remaining three domains
of the Google Web Treebank. Data set (4) was pro-
vided as an addition reference point for newswire
accuracy. The goal was to build a single system that
can robustly parse all domains, rather than to build
several domain-specific systems. We required all
participating systems to only submit results trained
on data sets (1) and (2). I.e., we did not allow the
addition of other labeled or unlabeled data. In par-
ticular the development data sets (3) and (4) were
not to be used for training the final system. It was
permissible to use previously constructed lexicons,
word clusters or other resources provided that they
are made available for other participants.

There were two tracks in the shared task, one for
constituency parsers and one for dependency parsers.
We additionally converted the output of the submit-
ted constituency parsers to dependencies. For the
evaluation, the participants were provided with the
raw sentences of the test portion of the Yahoo! An-
swers, Newsgroups and Local Business Reviews do-
mains from the Google Web Treebank. The eval-
uation data was not annotated with part-of-speech
(POS) tags, and the participants were expected to
run their own POS tagger either as part of the parser
or as a standalone pre-processing component. Ad-
ditionally, participants were also provided with Sec-
tion 23 of the WSJ portion of Ontonotes 4.0. The
official evaluation was performed only on the web
data. We used the WSJ evaluation results to com-
pare in-domain and out-of-domain performance.



The submitted system outputs were evaluated us-
ing standard tools: evalb for constituent labeled pre-
cision (LP), recall (LR) and F1; the CoNLL 2006
eval.pl script for unlabeled (UAS) and labeled attach-
ment score (LAS) (Buchholz and Marsi, 2006); Both
tools had to be slightly modified to handle the noisy
POS tags often predicted on web data.2

It is worth noting that in the above task descrip-
tion is only one of possibly many instantiations of
domain adaptation for parsing the web. We believe
that this setup is the most realistic. One could ar-
gue that it is overly restrictive. In order to construct
parsers that obtain high accuracy across all web do-
mains, the simplest solution might be to annotate
a new set of diverse sentences from the web. This
will help account for both lexical and structural di-
vergence. However, such a solution might not be
scalable as it is unlikely one can annotate examples
from all text domains represented on the web. In fact,
not only is classifying a web document into a set of
predefined domains a hard prediction task in and of
itself, simply defining the set of all domains on the
web can be non-trivial. If we add to this the fact
that our social and topic domain space changes fre-
quently, then annotation efforts would need to be an
ongoing process as opposed to a one-off cost. Hav-
ing said that, it is likely that the head of the distri-
bution can be adequately covered. In fact, the do-
mains that make up the Google Web Treebank do
already span a large portion of texts occurring on
the web from which we may consider extracting in-
formation. However, in order to handle the elusive
tail of the domain space and the ever growing set
of possible domains, we believe further studies into
adapting parsing technology is a necessity, which is
what motivates the setup for this particular shared-
task. In all likelihood, a combination of additional
annotation and robust domain adaptation will be re-
quired to bring parser accuracies inline with those
observed for edited texts.

4 Systems

The shared task received 20 official submissions
from 11 institutions in total. Of these, there were 8
submissions in the constituency parsing track and 12
submissions in the dependency parsing track. Here

2The modified scripts are available at http://mlcomp.org

we list each system by its official name as well as a
citation to the complete system description. The 8
constituency submissions received were:

• Alpage-1 & 2 – Seddah et al. (2012)

• DCU-Paris13-1 & 2 – Le Roux et al. (2012)

• IMS – Bohnet et al. (2012)

• OHSU – Dunlop and Roark (2012)

• Stanford – McClosky et al. (2012)

• Vanderbilt – Tang et al. (2012)

and the 12 dependency submissions received were:

• CPH-Trento – Søgaard and Plank (2012)

• DCU-Paris13 – Le Roux et al. (2012)

• HIT-Baseline & Domain – Zhang et al. (2012)

• IMS-1, 2 & 3 – Bohnet et al. (2012)

• NAIST – Hayashi et al. (2012)

• Stanford-1 & 2 – McClosky et al. (2012)

• UMass – Wu and Smith (2012)

• UPenn – Pitler (2012)

For dependency parsing, in addition to the above 12
systems, we also created submissions for each of
the 8 constituency parser submissions by running the
output through the Stanford converter.

These submissions investigated a wide variety of
techniques to tackle the problem. However, there
were a few underlying commonalities that spanned
multiple systems.

• Many systems built on top of publicly avail-
able tools, most frequently the Berkeley parser
(Petrov et al., 2006), the Charniak parser (Char-
niak, 2000) and the Mate dependency parser
(Bohnet, 2010).

• Combination systems were prevalent, in par-
ticular for the highest ranking systems. This
includes product-of-experts (Alpage, DCU-
Paris13), stacking (IMS, Stanford, UPenn), vot-
ing (CPH-Trento, DCU-Paris13, HIT), bagging
(HIT), up-training (IMS), re-ranking (DCU-
Paris13, IMS, Stanford) and model merging
(OHSU, Stanford).



• Unlabeled data was used by many systems
most commonly for self-training (Alpage,
DCU-Paris13, IMS, OHSU, Stanford, Vander-
bilt) and generating clusters or embeddings
(Alpage, IMS, NAIST, UMASS, Vanderbilt),
but also to aid techniques like co/tri-training
(HIT, NAIST), bootstrapping (Alpage), in-
stance weighting (CPH-Trento) and genre clas-
sification (DCU-Paris13).

• Many teams focused on improving the base
part-of-speech tagger, in particular for depen-
dency parsing systems where this is more com-
monly used as a pre-processor as opposed to
being integrated in the search. The primary
technique here was to use word cluster features,
but stacking (HIT, Vanderbilt) and data pre-
processing (Alpage, DCU-Paris13, Stanford)
were also investigated.

• A few teams pre-processed the data, either nor-
malizing and correcting particular web-related
tokens or part-of-speech tags (Alpage, Stan-
ford) or by augmenting the treebanks (IMS,
UPenn).

On top of the official submissions we prepared
two baselines, one for each track. These baselines
were trained on the WSJ portion of the training data
only and did not include any additional resources.
For the constituency track we trained the publicly
available Berkeley parser (Petrov et al., 2006) which
produces both part-of-speech tags and constituency
structure. We call this system BerkeleyParser. For
dependency parsing we trained a reimplementation
of the shift-reduce parsing model of Zhang and
Nivre (2011) with a beam of 64. For part-of-speech
tags we used the TnT tagger (Brants, 2000). We call
this system ZhangNivre.

5 Results and Discussion

Results are given in Table 3 for the constituency
parsing track and Table 4 for the dependency pars-
ing track. It is immediately clear that domain adapta-
tion for parsing the web is far from a solved problem.
Though systems routinely have newswire accuracies
in excess of 89% for constituency parsers and 90%
for dependency parsers, the best reporting systems

for the web data score in the 82-84% range for con-
stituency parsers and 81-85% range for dependency
parsers. Even part-of-speech tagging, which is of-
ten considered a solved problem, poses tremendous
challenges with accuracies around 90%. The prob-
lem is most acute for the answers domain, which is
furthest from WSJ, particularly in the kinds of syn-
tactic structures that it contains (questions, impera-
tives, etc.). This suggests that when moving to even
more distant domains we can expect further degra-
dation in performance, e.g., for social media texts
(Gimpel et al., 2011; Foster et al., 2011).

Another important observation is that parser com-
binations dominate the highest scoring systems. The
top-5 systems in both tracks involve some kind
of system combination, be it product-of-experts,
voting, stacking, combinations-of-combinations or
some other technique. Past studies on parser adapta-
tion have also shown combination systems to be ro-
bust to domain shift (Sagae and Tsujii, 2007). How-
ever, it is still unclear whether these systems are sim-
ply just better parsers overall or a truly robust to do-
main shift. Understanding this is an interesting and
fundamental area of future work.

The bottom of Table 4 shows the results for the
constituency outputs converted to dependencies with
the Stanford converter. Here we can see that these
systems tend to do better on average than the sys-
tems in the dependency track. In fact, the highest
scoring dependency track system was itself a combi-
nation of converted constituency parsers. There are
numerous reasons for this. As has been observed be-
fore (Petrov et al., 2010), constituency parsers tend
to be better at parsing out-of-domain data due to
global constraints placed on inference via grammar
productions near the top of the tree.

The automatic conversion to dependencies also
can favor constituency parsers in at least two re-
spects. First, this conversion is lossy, which means
that dependency parsers cannot model more fine-
grained attachment distinctions due to their overall
flatter structure. Also, as noted earlier, the Stanford
converter made numerous mistakes converting the
web data from constituents to dependencies that it
did not typically make on the newswire from WSJ.
As a result, there was a spurious domain shift that
parsers trained only on the raw dependencies could
never recover. However, since this shift did not exist



for the constituency data, then constituency parsers
would not suffer from this problem. This is because
the conversion process on the evaluation data natu-
rally include the systematic errors and/or inconsis-
tencies made by the Stanford converter leading to
seemingly correct dependencies.

In general, better WSJ parsing led to better web
parsing. Only a few systems displayed a low accu-
racy on WSJ compared to the web data when put
in context of the other systems. This might suggest
that the current best methodology for attacking the
domain adaptation problem is to improve parsing on
the WSJ, and not to directly address domain shift.
However, we believe that this is an artifact of the
plethora of combination systems submitted to the
shared-task. So while focusing on parsing the WSJ
could in theory lead to improvements out-of-domain,
such a strategy will never completely bridge the gap
in parser accuracy.

In fact, the top placed DCU-Paris13 team shows
that performance on the WSJ is not necessarily a
good indicator for how a accurate parser will be on
web text. Their dependency parsing system achieved
the best accuracy on the web text, but was only
the 7

th best on the WSJ-eval data. In the con-
stituency track, the second ranked DCU-Paris13-2
system had the6th best performance on the WSJ-
eval data. Thus, studies focusing on improving pars-
ing across a wide-range of domains are certainly the
most valuable. Hopefully the resources made avail-
able through this shared task will aid in breaking the
communities reliance on WSJ section 23 parsing re-
sults as the sole (or at least primary) means for mea-
suring English parsing performance.

Finally, we observe that better tagging was also
highly correlated with high parsing accuracy. This
is particularly true for the dependency parsing track.
Unlike constituency parsers, dependency parsers
tend to use part-of-speech tags as input to the parser
as opposed to part of the syntax that must be pre-
dicted jointly. As a result, they are highly depen-
dent on the accuracy of such tags. Furthermore,
many teams reported significant improvements in
LAS when using gold tags. This suggests that tack-
ling part-of-speech tagging accuracy on the web is a
fruitful means for improving parsing on the web, at
least for dependencies.

6 Conclusions

Domain adaptation for parsing the web is still an un-
solved problem. Ultimately, the most successful sys-
tems were those that used combinations in order to
improve their parsers across all domains. However,
additional efforts were made to truly adapt parsers
via self-training, cluster features, instance weighting
and smart pre-processing. It is our hope that the data
sets used in this shared-task3 will spur further re-
search in bridging the gap in accuracy between edit
texts, such as newswire, and unedited texts that are
more frequent on the web.
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Table 3: Constituency parsing results. BerkeleyParser is the baseline model trained only on newswire. Numbers in bold are the highest score for each metric. Note
that the average is computed only across the web domains.

Domain A (Answers) Domain B (Newsgroups) Domain C (Reviews) Domain D (WSJ) Average (A-C)
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CPH-Trento 78.12 82.91 90.42 82.90 86.59 91.15 79.58 84.13 89.83 90.47 92.42 97.25 80.20 84.54 90.47
Stanford-2 77.50 82.57 90.30 83.56 87.18 91.49 79.70 84.37 90.46 89.87 91.95 95.00 80.25 84.71 90.75
HIT-Baseline 80.75 85.84 90.99 85.26 88.90 92.32 81.60 86.60 90.65 91.88 93.88 97.76 82.54 87.11 91.32
HIT-Domain 80.79 85.86 90.99 85.18 88.81 92.32 81.92 86.80 90.65 91.82 93.8397.76 82.63 87.16 91.32
Stanford-1 81.01 85.70 90.30 85.85 89.10 91.49 82.54 86.73 90.46 91.50 93.38 95.00 83.13 87.18 90.75
DCU-Paris13 81.15 85.80 91.79 85.38 88.74 93.81 83.86 88.31 93.11 89.67 91.79 97.29 83.46 87.62 92.90

BerkeleyParser 77.42 82.38 90.19 82.24 85.84 91.18 77.90 83.02 89.33 89.68 91.78 97.12 79.19 83.75 90.23
OHSU 76.50 81.65 90.13 79.78 83.71 91.13 78.47 83.71 90.04 86.56 89.13 96.85 78.25 83.02 90.43
Vanderbilt 77.80 82.91 91.76 81.96 85.47 92.91 79.05 83.96 91.94 89.37 91.43 97.49 79.60 84.11 92.20
IMS 79.77 84.46 90.21 82.59 86.09 91.08 80.11 84.47 89.94 90.27 92.28 97.32 80.82 85.01 90.41
Alpage-1 80.47 85.31 91.10 84.96 88.01 93.17 81.43 86.14 91.37 90.65 92.68 97.20 82.29 86.49 91.88
Alpage-2 80.60 85.38 91.08 85.08 88.26 92.51 81.60 86.28 91.41 90.52 92.55 97.22 82.43 86.64 91.67
Stanford 81.13 85.80 91.20 84.05 87.51 91.61 83.22 87.26 92.45 90.28 92.53 97.01 82.80 86.86 91.75
DCU-Paris13-2 80.47 85.30 91.60 84.82 88.27 93.58 83.70 88.17 92.96 89.67 91.79 97.29 83.00 87.90 92.71
DCU-Paris13-1 81.71 86.49 91.62 85.47 88.78 93.38 84.19 88.44 92.89 91.37 93.33 97.53 83.7987.90 92.63

Table 4: Dependency parsing results. Upper half are officialsubmissions to the dependency parsing track. Lower half arethe systems from the constituency track
converted to dependencies using the Stanford Converter. ZhangNivre and BerkeleyParser are the baseline models trained only on newswire. Numbers in bold in
the top half of the table represent the highest score for eachmetric. Underlined numbers in the bottom half of the table represent what would have been the highest
score for each metric had the constituency to dependency conversion been submitted as an official result. The average is computed only across the web domains.


